Need-to-Know Criteria
Water Treatment Operator Class IV

A Need-to-Know Guide when preparing for the
ABC Water Treatment Operator Class IV Certification Exam
Before You Dive In...

What is ABC’s Need-to-Know Criteria?
This ABC Water Treatment Operator Class IV Need-to-Know Criteria was developed to assist operators in understanding the content that will be covered in ABC’s Standardized Water Treatment Operator Class IV exam. A methodical and comprehensive international investigation was conducted to determine the most significant job tasks performed by water treatment operators. The content covered on the exam represents the job tasks identified through this research as essential operator competencies, and is not limited to the practices of your system/facility. The following pages organize these job tasks into Content Areas and identify the amount of the test devoted to each area.

Is this Need-to-Know Criteria relevant to MY exam?
ABC offers a variety of standardized and customized exam services. This document is reflective only of the ABC Standardized Water Treatment Operator Class IV exam; older editions of the standardized exam and various customized exams are also administered by various certification programs. Please contact your certifying authority to determine whether they have implemented this exam for your program.

Pre-Test Questions
Your exam may include up to 10 extra questions that have not been used on previous versions of the exam. These are known as “pre-test” questions and allow ABC to gather valuable data about the new questions before they are included in future tests. Pre-test questions are unidentified and scattered throughout the exam so you will answer them with the same care in which you address scored questions. The pre-test questions are not included in your final score.

Exam Preparation Resources
Visit www.abccert.org to access the formula/conversion table administered with this exam, a list of approved references, information on purchasing study guides available from partner organizations, and more.

Copyright Notice
All ABC examination questions are the copyrighted property of ABC. It is forbidden under federal copyright law to copy, reproduce, record, distribute, or display these examination questions by any means, in whole or in part, without written permission from ABC. Doing so may subject violators to severe civil and criminal penalties.
The Water Treatment Operator Class IV exam will test you on essential job tasks. These job tasks have been categorized into the Content Areas detailed in the following pages. The table below summarizes the areas that are included on the exam, the number of test questions in each of these areas, and the complexity of the test questions in each area.

Just as water treatment operator job duties vary in their complexity, so will the questions you are asked on the exam. Some will be more simple and routine, whereas others will be more complex, or cognitively demanding. The following three levels are used to describe the complexity of the questions you will encounter on this exam:

- **Recall** – tasks at this level typically require the simple recall or recognition of specific facts, concepts, processes, or procedures, with little to no problem-solving involved. You may be asked to identify, illustrate, recall, and/or recognize specific information.

- **Application** – tasks at this level will involve some basic problem solving, calculations, or the interpretation and application of data. You may be asked to calculate, categorize, classify, compare, differentiate, explain, specify, translate, and/or apply knowledge.

- **Analysis** – tasks at this level may involve higher level problem solving, evaluation, or the fitting together of a variety of elements into a meaningful whole; they will usually require many steps in the thought process. You may be asked to analyze, evaluate, formulate, generalize, judge, predict, and/or use inductive or deductive reasoning to arrive at a solution.

Exam Content Outline

<table>
<thead>
<tr>
<th>Number of Questions</th>
<th>Content Area</th>
<th>Job Task Complexity Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>Treatment Process</td>
<td>![recal:5 ![recal:19 ![recal:9]]</td>
</tr>
<tr>
<td>13</td>
<td>Laboratory Analysis</td>
<td>![application:3 ![application:7 ![application:3]]</td>
</tr>
<tr>
<td>21</td>
<td>Equipment Operation & Maintenance</td>
<td>![analysis:4 ![analysis:11 ![analysis:6]]</td>
</tr>
<tr>
<td>9</td>
<td>Source Water Characteristics</td>
<td>![recall:2 ![recall:5 ![recall:2]]</td>
</tr>
<tr>
<td>24</td>
<td>Security, Safety, Compliance, & Administrative Procedures</td>
<td>![analysis:6 ![analysis:9 ![analysis:9]]</td>
</tr>
<tr>
<td>100*</td>
<td>Total</td>
<td>![total:20 ![total:51 ![total:29]]</td>
</tr>
</tbody>
</table>

*Your exam may contain up to 10 extra unscored pre-test questions (see Before You Dive In for more details).
1. Calculate and/or record:
 a. Plant residuals
 b. Backwash water
 c. Daily flow rate
 d. Chemical levels and previous days usage
 e. Filter performance data
 f. Online analyzers data
2. Calculate chemical dosages
3. Interact with HMI and SCADA
4. Determine correct disinfectant dosage and contact time to maintain desired level of residual in system
5. Control treatment plant processes, chemical dosages, and equipment used to treat water
6. Determine and adjust plant flows to meet system demands
7. Troubleshoot malfunctions and problems in plant process and equipment
8. Identify trends and abnormal operation in plant processes by interpreting data from gauges, meters, charts, and graphs
9. Interpret facility and process control water meters
10. Maintain records of operation of treatment facilities:
 a. Daily testing logs
 b. Daily equipment logs
 c. Daily intake and production
 d. Daily maintenance management reports and notes
 e. Microbiological sampling and testing
11. Make appropriate changes in plant processes to optimize performance and efficiency
12. Mix batches of chemical solutions
13. Add chemicals to hoppers and feed equipment
14. Monitor filter performance and backwash filters
15. Monitor the transmission and distribution system
16. Monitor, evaluate, and adjust:
 a. Pretreatment
 b. Coagulation and flocculation (e.g., flocculation tanks, rapid mix units)
 c. Clarification and sedimentation (e.g., inclined-plate, tube, upflow solids-contact)
 d. Filtration (e.g., biofiltration, diatomaceous earth filters, direct and conventional filtration, membranes, microscreens, slow sand, Greensand, pressure, upflow, rapid sand, cartridge)
 e. Residuals disposal (e.g., lagoons, sludge drying beds, land application, on-site disposal, solids composting)
 f. Backwash aids
 g. Source water treatment (e.g., copper sulfate, aeration, mixing)
 h. Iron/manganese treatment
 i. Lime-soda ash softening
 j. Granular activated carbon
 k. Powdered activated carbon
 l. Pressure testing membranes
 m. Ion exchange
 n. Chemical feed pumps
 o. Online instrumentation
17. Operate and control electric motors, pumps, and valves to regulate flow of water at the treatment facility
18. Perform calculations related to process monitoring
19. Ensure the proper handling, storage and use of chemicals:
 a. Acids
 b. Bases
 c. Oxidants
 d. Coagulants
 e. Coagulant aids
 f. Weighting agents
 g. Polymers
 h. Chemical disinfectants
 i. Fluoride
20. Corrosion control chemicals
1. Calibrate and repair laboratory instrumentation to ensure proper operation
2. Collect water samples
3. Perform sample preservation and documentation for laboratory samples
4. Perform lab tests, record results, and interpret data
5. Use equipment to evaluate water quality
6. Perform analyses:
 a. Color
 b. Taste and odor
 c. Turbidity
 d. Free Cl2 residual
 e. Total Cl2 residual
 f. Coagulant charge
 g. Fluoride
 h. pH
 i. Hardness
 j. Aluminum
 k. Alkalinity
 l. Iron
 m. Manganese
 n. Temperature
 o. DBP
 p. Bacteria
 q. Jar test
 r. Zeta potential
 s. Transmittance and absorbance
1. Adjust pumps to meet demand
2. Measure and analyze filter media to determine compliance with design specifications
3. Perform facility startup and shutdown per SOP
4. Calibrate inline instrumentation (e.g., pH, turbidimeters, Cl analyzer)
5. Complete equipment maintenance and repair records, including work orders
6. Update asset management log (e.g., CMS)
7. Ensure the operation and maintenance of equipment at the water treatment facility:
 a. Chlorine disinfection system.
 b. Filter systems (e.g., biofiltration, diatomaceous earth filters, direct and conventional filtration, membranes, microscreens, slow sand, Greensand, pressure, upflow, rapid sand, cartridge)
 c. Clarifier
 d. Treated water storage tanks
 e. Clearwell
 f. Programmable Logic Control (PLC) System
 g. SCADA
 h. Polymer feed system
 i. Raw and treated water pumping systems
 j. Raw water screening
 k. Ozone
 l. Ultraviolet
 m. On-site chlorine generation
 n. Water intake equipment
 o. Pumps
 p. Chemical feed equipment
 q. Chemical mixing equipment (e.g., rapid mix, flocculators, static mixers)
 r. Water quality analyzers
 s. Valves
 t. Injectors
8. Evaluate filter operation by performing filter surveillance tests
9. Inspect, exercise, and maintain valves
10. Maintain facility and process control water meters
11. Install and maintain facility piping (e.g., air, water, chemical)
12. Lubricate pumps, motors, chains, conveyors, and other machinery and equipment
13. Operate and maintain pumps, drivers, and auxiliary equipment
14. Operate and maintain onsite backup power generator
15. Perform calibration of chemical feeders
16. Perform efficiency tests on pumps and related equipment (e.g., pump curves)
17. Perform preventive and corrective maintenance to the auxiliary water treatment plant equipment:
 a. Electric motors
 b. Engines
 c. Gas and electric powered pumps
 d. Air compressors
 e. Emergency systems
 f. Power generation systems
 g. Pressure and flow regulators
 h. Online analyzers
i. Filters (e.g., air, oil)
j. Chemical feed systems
k. Blowers

18. Perform routine maintenance of grounds machinery, structures, equipment, and piping systems (e.g., cleaning, painting)
19. Perform inspections on clear well covers, hatches, access covers, vents, and overflows
20. Backwash filters
1. Calculate stored water release based on forecasted demand
2. Evaluate the following source water characteristics:
 a. Biological (bacterial, protozoa, viruses)
 b. Chemical
 c. Potential sources of source water contamination
 d. Physical
3. Measure static water level and pumping levels of wells
4. Measure and monitor raw water source
5. Perform inspections of surface water sources and report any issues that may affect water quality (e.g., non-native plant species, mussels, algae, erosion)
6. Perform inspections of ground water well sites and report any issues that may affect water quality (e.g., contamination, flooding, well head protection)
7. Perform raw water reservoir inspection, maintenance, and cleaning
8. Plan source water protection and watershed management, (e.g., watershed related to road construction and maintenance, silviculture and forest harvesting; watershed inspections public relations)
9. Determine if wells are under the direct influence of surface water (GWI)
10. Monitor lake stratification
11. Forecast future source water availability based on climatic data (e.g., climate change, hydrologic cycle, precipitation forecast)
12. Educate community on source water protection and conservation
1. Accept chemical shipments
2. Advise on need to order chemicals, repair parts, and tools
3. Advise system staff and/or contractors of potential problems and alarms
4. Prepare budget for chemicals, laboratory reagents, and equipment
5. Inspect plant safety equipment (e.g., fire extinguishers, AED, smoke and gas detectors)
6. Comply with safety requirements of the facility and actively promote safe work practices
7. Conduct tours of facilities
8. Develop and maintain standard operating procedures
9. Determine materials, labor, and cost needed for operation, maintenance, and repairs
10. Procure materials, labor, and cost needed for operation, maintenance, and repairs
11. Investigate consumer complaints regarding water quality and take remedial action
12. Take delivery of chemicals by unloading by hand or with equipment such as fork lifts and cranes (e.g., chlorine cylinders, bulk liquids, and dry bagged chemicals)
13. Inspect chemical containers and security tags before taking delivery (e.g., review SDS's)
14. Comply with lockout tagout procedures
15. Determine if water quality violations have occurred
16. Ensure compliance with regulatory agency standards
17. Manage safety and environmental issues in compliance with appropriate regulatory agencies (e.g., Hazardous Waste Disposal and Air Quality Standards)
18. Monitor and control residual effluents to comply with regulatory permit limits
19. Monitor the use of energy and chemicals
20. Complete monthly reports
21. Track and maintain inventory (e.g., equipment, chemical, and general supplies)
22. Evaluate operating records and trends
23. Maintain facility operation records
24. Conduct confined space entries according to appropriate regulatory guidelines
25. Notify the public when reportable maximum contaminant levels are exceeded
26. Perform facility and perimeter security checks
27. Use, handle, and dispose of chemicals according to safety standards
28. Perform safety procedures (e.g., calibration of atmospheric testing devices, chemical hazards and chemical spill response, pathogens, personal protective equipment)
29. Perform supervisory duties:
 a. Determining and assigning work schedules and tasks
 b. Enforcing policies and safety procedures
 c. Conducting performance evaluations
 d. Resolving grievances
 e. Making appropriate hiring decisions
 f. Initiating, investigating, and implementing disciplinary actions
 g. Coordinating schedule to ensure that plant resources are being utilized to achieve project specific objectives
30. Plan water treatment operations:
 a. Production
 b. Treatment and storage
 c. Budgeting
 d. Project management
e. Contract management
f. Capital improvement planning
g. Asset management

31. Review and update facility emergency response plans
32. Respond to emergencies (e.g., facility upset, major spill response, natural disasters, system contamination)
The chart below outlines several types of knowledge that support the performance of the job tasks on which you may be tested. These types of knowledge are rated at one of three levels to represent the extent of knowledge needed to perform the job tasks assigned to each Content Area:

Basic - A fundamental or lower level of knowledge is required. Operators performing tasks requiring this level of knowledge will be able to do so with some training; this level of knowledge may also be acquired and developed through job experience. Such tasks may be routine, utilizing established procedures, and have a low level of complexity. Not having this level of knowledge will have minimal impact or significance on the performance of the tasks listed in the Content Area, or on public safety and welfare.

Intermediate - A level of knowledge beyond the basic level is required. Operators performing tasks requiring this level of knowledge will be able to do so with training beyond that of the basic level. The operator will not only be able to apply required fundamental concepts, but will be able to understand and discuss the application and implications of changes to processes, policies, and procedures within the Content Area. Not having this level of knowledge will have a significant impact on the performance of the job and on public safety and welfare.

Advanced - A very high level of knowledge/job expertise is required and the operator will be functioning at an expert level. The operator can apply all fundamental, as well as highly developed or complex concepts, and will be able to design, review, and evaluate processes, policies, and procedures within the Content Area. Not having this level of knowledge will have a serious impact on the performance of the job and will be very harmful to public safety and welfare.

<table>
<thead>
<tr>
<th>Supporting Knowledge Type</th>
<th>Treatment Process (33%)</th>
<th>Laboratory Analysis (13%)</th>
<th>Equipment Operation & Maintenance (21%)</th>
<th>Source Water Characteristics (9%)</th>
<th>Security, Safety, Compliance, & Administrative Procedures (24%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arithmetic (e.g., measurements and calculations)</td>
<td>Advanced</td>
<td>Advanced</td>
<td>Advanced</td>
<td>Advanced</td>
<td>Advanced</td>
</tr>
<tr>
<td>Biology (e.g., pathogenic organisms)</td>
<td>Advanced</td>
<td>Advanced</td>
<td></td>
<td>Advanced</td>
<td></td>
</tr>
<tr>
<td>Chemistry (e.g., water chemistry)</td>
<td>Advanced</td>
<td>Advanced</td>
<td></td>
<td>Advanced</td>
<td></td>
</tr>
<tr>
<td>Chemical dosing (coagulants, oxidants, disinfectants, acids and bases)</td>
<td>Advanced</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical feed equipment (e.g., liquid, solid, gases)</td>
<td></td>
<td></td>
<td></td>
<td>Advanced</td>
<td></td>
</tr>
<tr>
<td>Chemical properties (e.g., reactivity, compatibility, pH)</td>
<td>Advanced</td>
<td>Advanced</td>
<td>Intermediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contaminants (e.g., organic, inorganic)</td>
<td>Advanced</td>
<td>Advanced</td>
<td>Advanced</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disciplinary procedures</td>
<td></td>
<td></td>
<td></td>
<td>Intermediate</td>
<td></td>
</tr>
<tr>
<td>General electrical principles (e.g., troubleshooting breakers, relays, circuits)</td>
<td></td>
<td></td>
<td>Intermediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal combustion engines</td>
<td></td>
<td></td>
<td>Intermediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory equipment (e.g., glassware)</td>
<td></td>
<td></td>
<td>Advanced</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory instrumentation (e.g., operation and calibration)</td>
<td></td>
<td></td>
<td>Advanced</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supporting Knowledge Type</td>
<td>Treatment Process (33%)</td>
<td>Laboratory Analysis (13%)</td>
<td>Equipment Operation & Maintenance (21%)</td>
<td>Source Water Characteristics (9%)</td>
<td>Security, Safety, Compliance, & Administrative Procedures (24%)</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------</td>
<td>---------------------------</td>
<td>---</td>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Laboratory procedures and protocols (e.g., Standard Methods)</td>
<td>Advanced</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory techniques</td>
<td>Advanced</td>
<td>Advanced</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legislative process</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Advanced</td>
</tr>
<tr>
<td>Mechanical principles (e.g., mixing, solids compression)</td>
<td>Advanced</td>
<td>Advanced</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumatics (e.g., actuators, compressors, valves)</td>
<td>Advanced</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prime mover of water (e.g., pumps)</td>
<td>Advanced</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles of finance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intermediate</td>
</tr>
<tr>
<td>Principles of hydraulics (e.g., mass flow balance, detention time, loading, velocity)</td>
<td>Advanced</td>
<td></td>
<td></td>
<td>Intermediate</td>
<td></td>
</tr>
<tr>
<td>Principles of hydrology (e.g., hydraulic cycle, aquifers)</td>
<td>Advanced</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles of public relations (e.g., water quality concerns, rate increases)</td>
<td></td>
<td></td>
<td></td>
<td>Basic</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Process control instrumentation (e.g., pH, turbidity, temperature, etc.)</td>
<td>Advanced</td>
<td>Advanced</td>
<td>Advanced</td>
<td>Advanced</td>
<td></td>
</tr>
<tr>
<td>Proper chemical handling and storage</td>
<td>Advanced</td>
<td>Advanced</td>
<td>Advanced</td>
<td>Advanced</td>
<td></td>
</tr>
<tr>
<td>Proper lifting procedures</td>
<td></td>
<td></td>
<td></td>
<td>Basic</td>
<td></td>
</tr>
<tr>
<td>Proper sampling procedures (e.g., chain of custody, storage and preservation)</td>
<td>Advanced</td>
<td></td>
<td></td>
<td>Intermediate</td>
<td></td>
</tr>
<tr>
<td>Public administration procedures</td>
<td></td>
<td></td>
<td></td>
<td>Intermediate</td>
<td></td>
</tr>
<tr>
<td>Quality control/quality assurance practices</td>
<td>Advanced</td>
<td></td>
<td></td>
<td>Basic</td>
<td></td>
</tr>
<tr>
<td>Recordkeeping policies</td>
<td>Intermediate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reporting requirements (e.g., violations, annual reports)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Advanced</td>
</tr>
<tr>
<td>Risk management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intermediate</td>
</tr>
<tr>
<td>Safety Data Sheets</td>
<td>Advanced</td>
<td>Advanced</td>
<td>Advanced</td>
<td>Advanced</td>
<td></td>
</tr>
<tr>
<td>Safety equipment (e.g., personal protective equipment, safety showers and eye washes)</td>
<td>Advanced</td>
<td>Advanced</td>
<td>Advanced</td>
<td>Advanced</td>
<td></td>
</tr>
<tr>
<td>Safety procedures and regulations (e.g., lockout tagout, confined space)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Advanced</td>
</tr>
<tr>
<td>Storage (e.g., cleanwells, reservoirs)</td>
<td>Advanced</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valve operation and maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Advanced</td>
</tr>
<tr>
<td>Watershed protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Advanced</td>
</tr>
</tbody>
</table>

*Percent of exam associated with the Content Area